
Stardog Benchmarking Report

Prepared By: Stardog Union
Last Updated: 06/20/2023

SECTION 1: SUMMARY
This report summarizes the results of performance benchmarks performed against Stardog 9.0.1 over
a wide range of datasets and workloads. We have used public datasets and benchmarks (BSBM,
LUBM, LSQB, YAGO, Wikidata) and followed the predefined benchmarking protocols where available.
The benchmarks cover transactional queries (read and update) over local and virtualized graphs,
reasoning queries, path queries, and bulk loading and measure the impact of concurrent users on
the overall system including the High Availability cluster. We present both latency and throughput
metrics for these benchmarks. We also compare the performance of Stardog 9.0.1 with the latest
version of a commercial RDF Graph Database where applicable. This RDF Graph Database performs
reasoning at data load time unlike Stardog which performs reasoning at query time and we discuss
the implications of this difference in this report.

Here we provide some highlights of our key findings over these benchmarks:
● Stardog can load large datasets with billions of triples at speeds of 1 million triples per

second on commodity hardware. This speed is not specific to one dataset and the same
speeds are sustained over different datasets.

● Stardog’s bulk loading speed is 3-4 times faster than the RDF Graph Database when
reasoning is disabled for the RDF Graph Database at data load time and more than 10 times
faster than the RDF Graph Database when reasoning is enabled.

● Stardog can complete mixed read and update benchmark for BSBM dataset with 1 billion
triples with an average query execution time of 10 millisecondswhen queries are executed
sequentially and under 70 millisecondswhen 64 queries are executed concurrently.

● Stardog consistently outperforms the RDF Graph Database at every concurrency level of the
BSBM benchmark where Stardog is 50 times fasterwith 64 concurrent users, 10 times faster
with 128 concurrent users, and 5 times fasterwith 256 concurrent users.

● Using a 3 node Stardog HA cluster improves query latency 8 to 10 times compared to a single
Stardog server at high concurrency levels of the BSBM benchmark and improves query
throughput by 2.5 times.

● Stardog can complete the Wikidata Graph Pattern Benchmark against 16.7 billion triples
with query execution under 100 milliseconds for 92% of the queries and under 1 second for
99% of the queries in the benchmark.

● Stardog outperforms the RDF Graph Database for every query in the LSQB benchmark and
for the majority of the queries Stardog is 3 to 9 times faster.

● Stardog can scale to 1 trillion triples by utilizing virtual graphs in a hybrid multi cloud setup
with query answering times of 1 second or less even for queries that require reaching out to
multiple data sources. The Stardog setup is 98% cheaper to run than the only competitor
who could reach this scale.

● For reasoning queries, against the LUBM dataset of 133M triples, Stardog completes 9 of the
14 queries in the benchmark under 100 milliseconds even when reasoning is done at query
time.

● Stardog reasoning performance is competitive with the RDF Graph Database for most of the
queries in LUBM benchmark and is significantly faster for some of the queries which proves
that query time reasoning is performant even at large scales while allowing 10 times faster
data loading times as explained above.

1

Please see the details of these findings in the following sections.

SECTION 2: BENCHMARKS
We present the detailed results for each benchmark in a separate section. The configuration details
and the parameters used during the benchmarks are presented at the end. All the scripts used for
testing are available upon request to reproduce these results independently.

Bulk Data Load Benchmark
In this section we look at the performance of bulk data load which is used for initially importing large
amounts of data into Stardog. In addition, Stardog uses this optimized data loading mechanism
when creating distributed caches for virtual graphs. As mentioned at the beginning, the
performance testing relies heavily on the specification of the hardware used. The number of CPUs,
the available memory and the type of disk all impact the performance. For this reason, we provide
loading times we have collected on different hardware configuration as summarized in the following
table:

Dataset Triples EC2 Instance
Cost
per hour

Disk
Loading Time
(H:MM:SS)

Loading Speed
(M triples/sec)

BSBM 100M c5d.9xlarge $1.728 NVMe 0:01:31 1.094

BSBM 100M c5.4xlarge $0.768 gp2 0:02:36 0.599

LUBM (1K) 133M c5d.9xlarge $1.728 NVMe 0:02:17 0.970

LUBM (1K) 133M c5.4xlarge $0.768 gp2 0:03:57 0.536

LDBC (SF10) 478M c5d.9xlarge $1.728 NVMe 0:07:37 1.045

BSBM 1B c5d.9xlarge $1.728 NVMe 0:15:58 1.043

BSBM 1B m5.4xlarge $0.768 gp2 0:21:29 0.775

BSBM 1B r5.2xlarge $0.504 gp2 0:36:14 0.459

LUBM(40K) 5.5B c5d.12xlarge $2.304 NVMe 1:16:09 1.168

BSBM 10B c5d.12xlarge $2.304 NVMe 2:56:41 0.940

Wikidata 16.7B r5.8xlarge $2.016 gp2 9:28:20 0.484

The c5d family of EC2 instances are CPU-optimized with local NVMe SSD disks that provide the
fastest loading times. As shown in the table, Stardog achieves 1M triples per second loading
throughput across different datasets with this configuration. As expected, the loading speed reduces

2

when less powerful machines are used but even at these levels 0.5M triples per second loading
speed can be achieved even with significantly cheaper machines.

The following chart shows Stardog loading times compared with a commercial RDF Graph Database
on some of these datasets where benchmarks for both systems were run on r5.2xlarge with identical
memory settings. The chart shows the loading times expressed in seconds to make comparison
easier.

Stardog is 3 to 4 times faster while loading the BSBM dataset and more than 10 times faster for the
LUBM dataset. To put the numbers in perspective the total loading time for Stardog was 6min45sec
whereas the RDF Graph Database spent 1h30min47sec. The bigger difference in LUBM is due to the
fact that reasoning is required for the benchmark as explained below so the RDF Graph Database
needs to compute and materialize all the inferences upfront at data loading time. In contrast,
Stardog computes inferences on-the-fly at query time as needed so there is no additional overhead
during bulk loading or transactional updates.

Mixed Read and Update Benchmark
Berlin SPARQL Benchmark (BSBM) is built around an e-commerce use case in which a set of
products offered by different vendors and consumers have posted reviews about products. The
Explore & Update use case in this benchmark illustrates the search and navigation pattern of a
consumer looking for a product while updates to the products and reviews are being applied. These
are targeted queries that should be answered very quickly.

3

http://wbsg.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/
http://wbsg.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/spec/index.html#usecase_explore_and_update

The benchmark consists of read and update query templates that are instantiated with different
values for each execution. There are 11 read query templates and 2 update query templates grouped
into query mixes with 30 queries. Each execution of the query mix uses randomized instantiations of
these query templates.

The following chart shows the geometric average of query execution times against the BSBM
dataset with 1 billion triples with increasing numbers of concurrent users. We use the parameters
employed in the past official BSBM evaluations where the number of concurrent users was 1, 4, 8,
and 64.

As the results show, the average query execution time ranges from only 10 milliseconds when there
is a single user to 69 milliseconds when there are 64 concurrent users. The main reason for
increasing query times is the fact that the Stardog server runs on a machine with 8 vCPUs. As we
present in the next section, the query execution times under heavy load can be reduced by
deploying Stardog's High Availability Cluster which results in higher query throughput.

The following table shows the throughput results for this benchmark measured as the number of
queries executed per hour (higher is better). The results show that overall query throughput
continues to increase with increasing number of concurrent users even though the average query
execution times increase as shown in the above table.

Concurrent Users 1 4 8 64

Queries per Hour 33,314.83 111,225.54 133,829.00 165,513.28

4

http://wbsg.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/results/V7/index.html

We next compare our results with the RDF Graph Database in the same benchmark run on the
exact same hardware. For this comparison we go beyond the settings used in past evaluations and
test both systems with also 128 and 256 concurrent users. The following chart shows the
comparison of average query execution times for both systems. As the results show Stardog
consistently outperforms the RDF Graph Database at every concurrency level but the difference
between systems becomes more visible as the concurrency level increases. The RDF Graph
Database is 50 times slower with 64 concurrent users, 10 times slower with 128 concurrent users,
and 5 times slower with 256 concurrent users.

The breakdown of execution times for query templates shows that Stardog is faster than the RDF
Graph Database on 10 of the query templates and slower on the remaining 3 templates. If we look
at the query throughput numbers, we see that Stardog outperforms the RDF Graph Database on
all concurrency levels except for the lowest concurrency level.

5

The RDF Graph Database throughput degrades when the concurrency level goes over 4 whereas
Stardog throughput continues to increase with the load. Stardog throughput is 2 almost exactly 2
times higher than the RDF Graph Database at concurrency levels 64, 128, and 256. As we show in the
next section Stardog throughput can be further improved by using the High Availability cluster.

High Availability Cluster Benchmark
The Stardog offers a High Availability (HA) Cluster with several built-in capabilities for hot standby
nodes, geographically redundant nodes, cache nodes for big data environments, and the ability to
scale up and down. The HA cluster automatically handles data replication across multiple Stardog
servers automatically ensuring all Stardog servers are synchronized at all times and self-heals if there
is a failure.

Using an HA cluster introduces some small performance overhead compared to using a single
Stardog server because a load balancer is needed to distribute the queries over multiple servers and
data changes need to be replicated but as we show in this section the increased capacity offered by
multiple Stardog servers more than offsets these factors.

6

In order to measure the performance of the Stardog HA cluster we repeated the BSBM1B Explore
and Update benchmark against a cluster with 3 Stardog servers. The following chart shows the
comparison of average query execution times for a single Stardog server and a 3-server Stardog
cluster.
When the system is under low load (8 or less concurrent users) we see that the single server offers
lower latency due to the reasons mentioned above. But as the load on the overall system increases,
we see the benefits of the HA cluster clearly. In the most extreme case of 256 concurrent users the
Stardog HA cluster outperforms the single Stardog server significantly. Tripling the number of
Stardog servers results in 8 to 10 times faster query execution times because once a server is
oversubscribed the queuing and context switching times result in additional performance
degradation especially for fast queries.

7

Another way to compare the HA cluster and the single server performance is by looking at the
throughput numbers calculated as the number of queries executed per hour as shown in the next
chart. The single Stardog server exhibits slightly better query throughput when the concurrency
load is low, but the HA cluster throughput is better at higher load.
Notice that the query throughput for the cluster is about 2.5 times better than the single server
under heavy load. The difference here is not as high as query execution times mainly because slower
queries in the mix have more effect on the overall throughput whereas each query contributes
evenly for average execution times.

Overall, these results show that Stardog HA cluster not only improves the system robustness by
eliminating single point of failure but it also improves the overall performance and throughput
especially when the system is under heavy load.

Large Scale Read Benchmark
Wikidata is a free and open knowledge base that serves as the central storage for the structured
data of Wikipedia. It is one of the largest publicly available RDF datasets that is constantly growing
and contained 16.7 billion triples at the time of our benchmarking. Wikidata Graph Pattern
Benchmark (WGPB) comes with 850 queries that test different join patterns.

The following chart shows the histogram of query execution times for the 850 WGPB queries. As the
results show, the response times are less than 100 milliseconds for 92% of the queries and less than 1
second for 99% of the queries in the benchmark, highlighting that Stardog is great for both
interactive real-time applications, and large reporting and data processing solutions even at

8

https://www.wikidata.org/
https://zenodo.org/record/4035223
https://zenodo.org/record/4035223

exceptionally large scales.

Subgraph Matching Benchmark
Labelled Subgraph Query Benchmark (LSQB) is a benchmark from Linked Data Benchmarking Council (LDBC)
solely focusing on subgraph matching. The primary goal of this benchmark is to test the query optimizer (join
ordering, join types selection) and the execution engine (join performance, support for worst-case optimal
joins) of graph databases. The dataset is based on a representation of social networks with people, forums,
messages, and locations.

There are 9 queries in the LSQB benchmark that require the query engine to process large amounts of data
even though the dataset itself is relatively small. At scale factor 1, there are only 26M triples in the dataset but
the queries may end up matching nearly half a billion distinct subgraphs. For this reason, the execution time of
these queries are measured in seconds and not milliseconds.

The following chart shows the average query execution times for LSQB queries for Stardog and the RDF
Graph Database. As the results show, Stardog is significantly faster on all queries and the difference between
two systems is most noticeable on queries that take more time. For a majority of the queries Stardog is 3 to 9
times faster than the RDF Graph Database.

9

https://github.com/ldbc/lsqb
https://ldbcouncil.org

Virtual Graph Benchmark
All the existing SPARQL benchmarks solely focus on data that has been fully materialized as an RDF
graph in a local index. But Stardog’s unique virtualization capability allows it to query external data
sources as virtualized graphs. In order to test the Stardog performance over hybrid multicloud data
sources an independent benchmark was carried out by McKnight Consulting over a massive Trillion
Triple Knowledge Graph on a modified version of the BSBM benchmark. You can find more details
about this benchmark in the Trillion Edge Knowledge Graph report. We summarize the main
findings of the report in the remainder of this section.

In this version of the benchmark the BSBM data has been partitioned into three parts: products,
offers, and reviews. Each part was loaded into a different system: products into Stardog, offers into
Amazon Redshift in AWS and reviews into SQL Server in Azure:

10

https://www.stardog.com/platform/features/virtual-graphs/
https://www.stardog.com/blog/connected-enterprises-care-about-meaning-not-about-data/
https://www.stardog.com/blog/connected-enterprises-care-about-meaning-not-about-data/
https://info.stardog.com/trillion-triple-benchmark
https://info.stardog.com/trillion-triple-benchmark
https://info.stardog.com/trillion-triple-benchmark

The size of the data distributed over the three data sources looks as follows:

Data Source Graph Type Number of Entities Number of Triples Data size

Stardog Materialized 8.8 billion 115 billion 6.1TB

SQL Server Virtualized 30 billion 220 billion 4.5TB

Redshift Virtualized 57 billion 660 billion 2.8TB

The following table shows the average query execution times for each query template in the
benchmark. Since most of the data is stored in external data sources, we have used the Explore use
case of BSBM without the updates. We followed the same BSBM benchmarking protocol with
randomized query mixes so no same query is executed twice to avoid caching query results. Average
query execution time for each query has been one second or less.

11

Queries Average Number of Results Average Execution Time (sec)

1 10.0 0.445

2 18.3 0.010

3 9.8 0.769

4 10.0 1.107

7 10.9 0.049

8 3.4 0.034

9 6.0 0.017

10 1.3 0.015

11 10.0 0.015

12 8.0 0.022

The report also discusses how these results compare with other products in scale and operational
cost. First, many products do not have any results close to this scale; the highest scale benchmark
results published by Ontotext GraphDb is 17 billion, Neo4j, 14 billion, TigerGraph, 67 billion. In
addition, the report found Stardog 98% cheaper to run than the only competitor who could reach
this scale, AnzoGraph. The configuration used in this benchmark is very different from all the other
benchmarks discussed in this report so please refer to the McKnight Consulting report for details.

Reasoning Benchmark
All the benchmarks mentioned so far perform queries over explicit data whereas the Lehigh
University Benchmark (LUBM) tests the performance of reasoning queries over an ontology. This
benchmark is used and referenced frequently in the literature because it is the benchmark that has
been around the longest.

The benchmark comes with a fixed set of 14 queries that requires inferences to be considered, and
most return no results otherwise. Stardog uses query-time reasoning which means every input
query is rewritten by taking the benchmark ontology into account to return the additional inferred
results. This requires more work during query time but we show that the Stardog reasoning
performance is as good as systems that compute inferences at data load time and materialize them
upfront.

The following chart shows the average query execution times for the 14 LUBM queries using Stardog
and the RDF Graph Database.. The characteristics of queries in the LUBM benchmark vary widely
which is why there is a large gap between query execution times for different queries regardless of
the system used which is why the following chart uses the log scale.

12

http://swat.cse.lehigh.edu/projects/lubm/
http://swat.cse.lehigh.edu/projects/lubm/

Both systems answer 9 of the benchmark queries very quickly under 100 milliseconds. Even though
the RDF Graph Database is typically faster for these queries in around 10 milliseconds. There are also
some queries where Stardog outperforms the RDF Graph Database. For example, query 2 involves
traversing department hierarchy in universities and even though Stardog does this on the fly the
query execution is still 3 times faster. Both systems take much longer time to answer query 6 simply
because this query returns more than 10M results. The query-time reasoning involves more overhead
for queries that return massive result sets. If the same query is executed with a limit then both
systems execute the query in similar times.

In summary, the RDF Graph Database does better than Stardog in this benchmark but the
difference is typically minimal (a fewmilliseconds) and in general not large enough to justify the 10
times difference in data loading speeds mentioned in the first chapter.

Path Benchmark
YAGO is a large knowledge base with general knowledge about people, cities, countries, movies, and
organizations that is continuously being updated. YAGO2S version of the dataset extracts and
merges information frommultiple sources such as Wikipedia, Word-Net, Geonames, the Universal
WordNet, and WordNet Do- mains. The resulting dataset has 33.6M triples. The YAGO2S property
path benchmark tests the performance of path queries that require the query engine to recursively

13

https://yago-knowledge.org/
https://dl.acm.org/doi/10.1145/2484425.2484443
https://dl.acm.org/doi/10.1145/2484425.2484443

traverse the links in the graph to answer queries which are not covered in the other benchmarks. The
benchmark comes with 6 queries that test different navigational patterns over locations.

The following chart shows the average query execution times of Stardog for the queries in the
YAGO2S benchmark. The results show average execution time for these queries are extremely low
with the hardest query taking slightly more than 300ms.

SECTION 3: CONFIGURATION AND SETUP
All the experiments have been run on an EC2 instance type r5.2xlarge (8 cores, 64GB RAM) using
Stardog version 9.0.1 unless otherwise specified in the above sections. The gp2 general purpose SSD
disks were used as the home directory to store the databases. Stardog memory uses a combination
of Java heap memory and native memory, so its memory was configured as -Xmx20g
-XX:MaxDirectMemorySize=28g.

All benchmarks except the bulk loading benchmarks use default Stardog options. For bulk loading,
Stardog memory mode has been set to BULK_LOAD in stardog.properties.

All the benchmarks for the RDF Graph Database were run on the exact same hardware configuration
as Stardog. The RDF Graph Database uses only Java heap so its memory was configured with the
option "-Xms 48g -Xmx 48g" to have the same total memory limit as Stardog. Data loading into the
RDF Graph Database was performed using an offline data loading tool provided by the RDF Graph
Database and performs faster than online data loading. Thus, the loading command was used while
the RDF Graph Database server was not running, and the server was started after the data was

14

loaded. In the case of the LUBM benchmark where reasoning is needed, the reasoning
materialization was performed after the initial data loading. The additional time spent for reasoning
is included in the data loading time in the above charts.

For the BSBM benchmark, we have used the procedure that has been employed in past official
evaluations with the bsbmdriver that comes with bibm-0.7.8 library. As in the official evaluations we
used 1, 4, 8, and 64 threads for concurrent users but additionally we ran tests with 128 and 256
threads. Before starting the benchmarks, a warmup run with 8 threads and 512 iterations were
performed to get the system to a steady state. After that, the actual benchmark runs were run with
separate warmup iterations with the same random seeds specified in the official evaluation. The
same process was employed to run the BSBM benchmarks against the RDF Graph Database.

Number of Threads Driver Parameters

1 -seed 9834533 -runs 25 -w 100

4 -seed 8188326 -mt 4 -w 8

8 -seed 9175932 -mt 8 -w 16

64 -seed 4187411 -mt 64 -w 128

128 -seed 8763581 -mt 128 -w 128

256 -seed 1218313 -mt 256 -w 256

For LUBM and YAGO benchmarks, a set of fixed queries were executed against each system using
curl to send queries via the SPARQL protocol. The first execution of the query mix was discarded as a
warmup iteration and three additional iterations were completed afterwards. The reported query
execution numbers are the average of these runs.

15

http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/results/V7/index.html
http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/results/V7/index.html
https://sourceforge.net/projects/bibm/

